
2009 28th IEEE International Symposium on Reliable Distributed Systems (SRDS ’09).

Co-scheduling of disk head time in cluster-based storage

Matthew Wachs, Gregory R. Ganger
Parallel Data Laboratory

Carnegie Mellon University
Pittsburgh, PA, USA

�mwachs,ganger�@ece.cmu.edu

Abstract—
Disk timeslicing is a promising technique for storage perfor-

mance insulation. To work with cluster-based storage, however,
timeslices associated with striped data must be co-scheduled
on the corresponding servers. This paper describes algorithms
for determining global timeslice schedules and mechanisms for
coordinating the independent server activities. Experiments
with a prototype show that, combined, they can provide
performance insulation for workloads sharing a storage cluster
— each workload realizes a configured minimum efficiency
within its timeslices regardless of the activities of the other
workloads.

Keywords-performance isolation; quality of service; shared
storage; performance; clustering; approximation algorithms;
heuristics; strip packing

I. INTRODUCTION

Employing a single storage infrastructure for multiple
applications, rather than distinct ones for each, can increase
hardware utilization and reduce administration costs. But,
interference between application I/O workloads can signif-
icantly reduce the overall efficiency of traditional storage
infrastructures, due to disruption of disk access locality and
cache access patterns.

Recent work has provided mechanisms to insulate work-
loads sharing a single storage server such that each realizes
a specific fraction (called the “R-value”) of its standalone
efficiency [22]. That is, efficiency loss due to interference
is bounded to �� � ��, regardless of what other workloads
share the server. To provide this insulation guarantee, disk
head time and cache space are explicitly partitioned among
workloads. Each workload receives an amount of cache
space and a timeslice of disk head time that bounds the
impact of interference. Disk head timeslicing is akin to
process scheduling on CPUs. Each timeslice is long enough
to complete many requests, amortizing any overheads of
switching between disk workloads.

Although effective for the single server case, disk
head timeslicing faces difficulties for cluster-based storage.
Specifically, when data is striped across multiple servers, a
client read request can require a set of responses. Until all are
received, the read request is not complete. Since each server
only acts on a disk request within the associated workload’s
disk head timeslice, the client will end up waiting for the last
of the timeslices. If the relevant disk head timeslices are not

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of servers

Goal
No insulation

Timeslicing
Synchronized

Figure 1. Moving beyond one server. Three workloads share a server
and the throughput of one, which has been allocated a one-third share of
disk time, is graphed. Without performance insulation, the other workloads
interfere and the goal is not met. Timeslicing disk head time solves the
problem on one server. But when the workloads are striped across servers,
timeslicing becomes ineffective unless the timeslices are synchronized. (The
�-axis is normalized against the throughput the depicted workload receives
running alone on the corresponding number of servers.)

scheduled simultaneously, the delay could be substantial (5–
7X in our experiments). Worse, if the disk head timeslices
do not all overlap, the throughput of a closed-loop one-
request-at-a-time workload will be one request per round
of timeslices.

Providing performance insulation for cluster-based storage
requires co-scheduling of each workload’s disk head time-
slices across the servers over which its data is striped. For
cluster-based storage systems that allow different volumes
to be striped differently (e.g., over more servers, over
different servers, or using just parity or a 2-failure correcting
code) [1], [23], there is the additional challenge of finding
a schedule for the cluster.

This paper describes a cluster-based storage system that
guarantees R-values to its workloads. To do so, it extends the
mechanisms from the single-server previous work with ex-
plicit co-scheduling of disk head timeslices. It uses standard
network time synchronization and synchronizes “time zero”
for the disk head time scheduler. It implicitly coordinates the

c�2009 IEEE. 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Co-scheduling of disk head time in cluster-based storage

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Parallel Data
Laboratory,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
28th International Symposium On Reliable Distributed Systems September 27-30, 2009. Niagara Falls, NY

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

work done by each server in co-scheduled timeslices, while
allowing local request ordering decisions within timeslices.
It assigns workloads to subsets of servers and organizes
their timeslices to ensure that each striped workload’s disk
head timeslices are co-scheduled. Finding an assignment that
works is an NP-complete problem, but there exist heuristics
that allow solutions to often be found quickly. Although
each of the heuristics yields quick answers in only 40–
80% of cases, we find that running several in parallel yields
a quick solution in over 95% of cases. When a quick
solution cannot be found, introducing a small co-scheduling
efficiency reduction helps.

Experiments confirm that, by adopting a global timeslice
schedule found with heuristics and ensuring the servers
are synchronized as they follow it, workloads receive the
insulated efficiency expected. Efficient access during a con-
trollable share of server time provides performance that is
predictable and controllable.

II. MOTIVATION

Shared storage provides a number of potential benefits
over dedicated storage systems for each workload. For
instance, spare resources can be made available to whichever
workload is experiencing a surge in required capacity or
throughput at a given point in time.

Unfortunately, interference between workloads often oc-
curs when they share a storage system. Competition for
a disk head can decrease the efficiency with which a
workload’s requests are completed. This occurs when the
interleaving of access patterns results in a combined request
stream that reduces their locality. For instance, when two
active, streaming workloads share a disk, the combined
sequence of requests at the disk often results in excessive
seeking between the two workloads. This can reduce their
throughput by an order of magnitude, even if disk time is
divided evenly between the two workloads.

A. Performance insulation

This paper focuses on providing performance insula-
tion [22] between shared workloads on a cluster-based
storage system. Insulation preserves the efficiency that indi-
vidual workloads receive when they share a storage system.
Such insulation has been demonstrated in a single server,
called Argon [22]. Argon takes a configuration parameter
termed the R-value and tunes its explicit disk and cache
sharing policies so that any workload’s efficiency in the
shared system is no less than that fraction (between 0
and 1 exclusive) of the workload’s efficiency when it runs
alone. For instance, suppose � � ��� and a workload
has been allocated a one-third share of the server. If its
standalone performance on that server would be ������, then
Argon will guarantee its shared performance is no less than
��� � �

�
� ������. This guarantee is provided regardless of the

characteristics of any other workloads on the same system.

One of the techniques used by Argon is round-robin disk-
head timeslicing, which provides each workload stretches
of uninterrupted disk time similarly to standard CPU mul-
tiplexing. Each workload in the system receives a dedi-
cated timeslice. Timeslices are long (e.g., 140 ms) to allow
workloads to maintain most of their spatial and temporal
locality. Argon uses long-lived, stable round-robin timeslice
schedules. Workloads are assigned fractions of total server
time (e.g., �

�
) sufficient to meet their performance needs,

and timeslices are proportionally sized to satisfy these as-
signments. Each round, workloads are asssigned their usual
timeslice regardless of how many or how few requests they
have “in flight” at the time. Similarly, timeslices are not
tailored to the specific requests a workload will issue in a
particular round. An idle workload’s timeslice is not skipped
or shortened; this ensures that it will not be penalized if, for
instance, it becomes active shortly after the beginning of its
timeslice. The other workloads already receive the fraction
of server time they need to achieve their performance goals
within their own timeslices. Reappropriating idle time would
only improve their performance beyond their goals.

B. Cluster-based storage

Argon is a standalone storage server. But, modern storage
is increasingly provided by combining the resources of
multiple servers. Doing so can provide significant benefits
over standalone storage servers. For example, each server
need provide only a fraction of required performance. Like-
wise, fault tolerance can be provided by storing redundancy
data across servers rather than expensive engineering of
one server. Cluster-based storage systems typically stripe
data across servers, breaking large data blocks into smaller
fragments that are placed on different servers. Striping so
allows clients to increase bandwidth via parallel transfers
to/from multiple servers.

Our goal is to construct a cluster-based storage system that
provides the same guarantees as Argon (a standalone server).
One design might be to just “run Argon” as each of the
individual servers — each server would provide guaranteed
efficiency for the fragments it is storing. The question that
arises, however, is how do these per-fragment efficiency
guarantees compose into the block-level guarantees desired
for a workload?

Issues with timeslicing: With striping, a client request
for a block translates to a fragment request at each server.
The client request is not fulfilled until all its fragments are
read and combined back into the original block. Unfortu-
nately, the throughput for a block is not simply the sum of
the throughputs for its fragments. While that sum is an upper
bound, the response time observed by a client is that of the

slowest server to respond.1 For closed workloads, slower
response times directly reduce throughput.

Timeslicing can cause significant response time differ-
ences across servers in two ways. First, the list of workloads,
ordering and length of timeslices, and overall round length
(time before the schedule of timeslices repeats) may not
match across the servers. Without arranging the schedules
for each of the servers that a workload uses, its timeslices
may not consistently “line up” across the servers. Second,
even if the schedules are designed to co-schedule the time-
slices of each workload, the phase of the servers (i.e., the
point in wall-clock time when the round-robin order restarts)
may not match (see Figure 2). This can occur either because
no attempt was made to synchronize them, or because the
servers diverged.

If these two issues are not mitigated, performance can
be worse with timeslicing than without. In Figure 2, for
instance, a single-threaded workload would only complete
one request per round because there is no overlap between
the corresponding timeslices at the servers — by the time
the request completes at the second server, the timeslice is
over at the first server.

III. DESIGNING A SCHEDULE

To minimize administrator effort, we wish to have an au-
tomated means of creating timeslice schedules and changing
them when workloads enter or leave the system. This section
describes and evaluates algorithms for schedule design.

A. Problem specification

We assume a cluster of homogenous storage servers with
one disk each.2 Machines that have significantly different
resources (i.e., disrupt homogeneity) should be placed in a
separate cluster with like machines.3

Workloads are specified using two numbers: number of
servers and share of servers. For instance, a workload may
be striped across five servers and, to achieve the desired level
of performance, need at least a one-third share of time on
each of the five servers.

Finding a suitable schedule for the cluster amounts to
finding round-robin timeslice orderings for each of the
servers so that each workload receives its share of time at the
required number of servers, and each workload’s timeslices

1With a more flexible data distribution scheme — such as erasure coding
— the client can read from any � of the � servers storing its data. While
the request response time may no longer be that of the slowest server, it is
still limited by the ���� ��� slowest server.

2Machines that have multiple, independent disks can be thought of as
separate machines in the context of this problem. From our perspective,
machines with disk arrays can be treated as having a single, bigger disk.

3If a set of machines has minor variations, however, they may be clus-
tered together and treated as all having the “lowest common denominator”
of performance. Thus, for example, minor differences in disk characteristics
(e.g., due to in-field replacement) are fine.

Server 1

Server 2

1

1

2

23 3

1

round

round

3 3

33

Figure 2. Out-of-phase servers. If the phase of identical rounds does
not match across the servers, then a client must wait for the most-in-the-
future occurrence of its timeslice across all the servers before its request
completes.

are co-scheduled. The system may select whichever servers
are convenient for a given workload.4

Finding a solution should be relatively efficient (e.g., a
few minutes or less), but need not be extremely fast, in
practice. As described in Section II-A, timeslice schedules
are long-lived because they are a function of the workloads,
not of specific requests. A new schedule need be found only
when workloads enter the cluster, or when the fraction of
server time assigned to a workload is changed. Adding a
new workload involves the substantial task of adding a new
dataset, which makes it a time-consuming operation already.
Rescheduling due to workload removal need not be fast,
since existing workloads are already scheduled. Changing
a workload’s allocation usually occurs only early in a
workload’s lifetime, as the QoS control system determines
the appropriate allocation. Most workload changes do not
require a change in the schedules, since they affect only
what a workload does within its timeslices, not the ability
to maintain the R-value. Thus, our target is algorithms that
can find solutions within a few minutes. Nonetheless, our
algorithms parallelize very well and can be completed in
seconds.

Figure 3 shows an example input list of workloads and
an example solution to the problem.

B. Geometric interpretation

This problem may be recast as a geometric problem,
as suggested by Figure 3. Consider each workload as a
rectangle whose height is the number of servers it needs,
and whose width is the fraction of time it needs on each of
those servers. Consider a larger rectangle, whose height is
the total number of homogenous servers in the cluster, and
whose width is one (corresponding to the full share of time
on a server). Can the set of smaller rectangles be placed into
the larger rectangle without overlapping or rotating any of
the smaller rectangles, or exceeding the boundaries of the
larger rectangle? If so, then an appropriate schedule exists,
and the rectangle placements can be directly translated into
a suitable timeslice schedule.

4There may be additional constraints, such as not exceeding the storage
capacity available at a server, or perferring certain placements due to
network topology, that we do not consider here.

Num servers
3
3
1
1
1
5
7

Proportion
1/2
1/2
1/2
1/6
1/3
1/3
1/6

 #
 o

f s
er

ve
rs

fraction of server time

Total servers = 7 1/2 1/6 1/6

7

3
3

1
Figure 3. Example problem instance and solution. On the left is an
example input to the scheduling algorithm; on the right is one possible so-
lution. Rectangles correspond to workloads, with their height corresponding
to the number of servers and their vertical location corresponding to which
servers to use; their width corresponds to share of time, and their horizontal
location corresponds to the span of time during which their timeslices are
scheduled. The enclosing rectangle represents a single round in the cluster;
the schedule is repeated indefinitely.

This geometric problem is known as the strip-packing
problem or the cutting-stock problem [7]. It has been stud-
ied in industrial settings where a larger piece of material
must be cut into smaller pieces to manufacture a product.
Unfortunately, it is known to be NP-complete. The above
formulation is the decision version of the problem, which
asks can the rectangles all fit in a larger rectangle of a given
size? The optimization version asks what is the minimum
width of the larger rectangle, for a fixed height, such that all
the rectangles fit? An optimal solution of a given problem
is a packing of rectangles that uses the minimal possible
width.

For our purposes, a solution that has a width of at most
one is sufficient to provide all workloads their requested
share of the server. It may be preferable to find a solution
that is even narrower, if one exists, because it would give
the workloads extra server time; but this is not necessarily
to meet the insulation goals.

C. Related work

Strip packing has been explored by theoreticians seeking
ways to accelerate searches for the optimal solution, for
approximation algorithms that can provide solutions within
a guaranteed distance from optimal, and for heuristics that
may find “acceptable” solutions quickly.5

1) Exhaustive search: As with any NP-complete prob-
lem, one can enumerate all possible solutions and test
whether they meet the requirements. However, this approach
results in an exponential run time that will be prohibitive for
sufficiently large problems.

In the case of strip packing, a naı̈ve search might consider
placing a rectangle at each possible coordinate location.6

However, Fernandez de la Vega and Zissimopoulos [4] show
that it suffices to consider a smaller (but still exponential) set

5By “acceptable,” we mean solutions that are not even guaranteed to be
necessarily close to optimal, but might be subjectively good enough.

6When we refer to placing a rectangle at a coordinate location, we mean
placing a specific corner at that location.

of possible solutions. If there is a solution, then there exists
a left-bottom justified solution — essentially, one in which
there are no gaps. Thus, one need only consider putting
rectangles at active corners, i.e. touching other rectangles
or the boundaries.

2) Approximation algorithms: Approximation algorithms
exist [4], [12] that are able to find solutions within �� �
�� of optimal in time that is polynomial in the number of
rectangles but exponential in other variables. Unfortunately,
for our problem sizes, we believe that no point along the
runtime-vs.-� tradeoff will be acceptable (too much error is
introduced and runtime remains high).

3) Heuristics: There are various heuristic techniques that
are sometimes able to produce a solution quickly. They do
not guarantee the optimality of the solution, nor whether
their inability to find a solution indicates there is none.
However, they can often be very effective in practice. In
our case, we only need to find a solution with a width � �;
optimality may not be important.

In a similar vein to Fernandez de la Vega and Zissi-
mopoulos’s use of left-bottom justified solutions, a series of
heuristic methods [2], [8] will try simply placing rectangles
in a fixed order one after the other as far to the bottom
and left as possible. If holes that have been surrounded by
already-placed rectangles can still be filled, this is known
as Bottom-Left-Fill (BLF). Once all rectangles have been
placed, the solution is checked to see if it exceeds the width
limit. While BLF places the rectangles in whatever order was
specified in the problem description, other orderings may be
more successful. BLF-DW sorts the rectangles in order of
decreasing width; BLF-DH by decreasing height. Lesh et
al. [14] suggest sorting by decreasing area (BLF-DA) or
perimeter (BLF-DP).

Lesh et al. [14], [15] further suggest that, if one of these
heuristic methods does not work, it may still be possible
to find a solution quickly by spending a limited amount of
time randomly searching small perturbations to the initial
heuristic orderings, a technique they name BLD*.

D. Relaxing the problem

Argon maintains a guaranteed level of efficiency, ex-
pressed by the R-value, when a single server is shared; we
extend that concept to the clustered setting. We refer to the
R-value being enforced at a particular server as ������� . Just
as it may not be possible or practical to share a single server
with perfect efficiency, it may not be reasonable to cluster
with perfect efficiency. Thus, we introduce a second R-
value, ���	�
����� , which represents the minimum efficiency
maintained by the clustering scheme. The R-value observed
at the client, then, is

� ���	�
����� � ��	
�������

�������

The R-value at the client is the ultimate indication of whether
insulation has been achieved; ���	�
����� and ������� are

not externally visible and can be manipulated for the con-
venience of the storage system.

E. Our approach

We perform strip-packing to generate a schedule for
the cluster as follows. We start by attempting to achieve
���	�
����� � ���. We create four parallel threads to attempt
four different heuristics (BLF-DW, -DH, -DA, -DP). If
the heuristic orderings do not lead to a solution, then we
try nearby points in the solution space by permuting the
heuristic sort orders.7 Each of the threads explores orderings
near its initial sort order. In our experience, no specific sort
order is always a good starting point for this exploration, but
one of them usually is. When a thread finds an acceptable
solution, the other threads are halted and the solution is used.
Figure 4 shows pseudocode specifying the exact sequence in
which we search the solution space near a heuristic ordering.
If a solution cannot quickly be found, we relax ���	�
�����

(for instance, we might next try ���	�
����� � ���
) and
repeat.

Initial setup: The inputs to our algorithm are the
number of servers in the cluster and the list of workloads,
each of which is described by a number of servers and a
fractional share for each server. We create small rectangles
corresponding to each of the workloads, as described in
Section III-B. We create a large rectangle to represent the
cluster with the height equal to the number of servers in the
cluster and the width equal to �����	�
����� .

The width of the larger rectangle represents the period
over which the schedule repeats; each workload’s rectangle
consumes a fraction of that round length. If ���	�
����� �
��� then, when we pack the workloads, a workload request-
ing a particular share of a server will receive that proportion
of time. If ���	�
����� � ���, however, then the round length
will be scaled up without scaling up the workloads. This
creates more space into which to pack the rectangles, which
may make the problem faster to solve or possible to solve
where the original one was not. But, the workloads receive a
smaller share of the round, resulting in a fractional decrease
in performance equal to ���	�
����� .

F. Evaluation

To evaluate the efficacy of creating a timeslice schedule
using our approach, we created a number of random problem
instances representing sets of storage workloads. Our results
show that exhaustive search is impractical; that starting
exhaustive search with any one of the heuristic orderings
does not improve mean solution time significantly; but that
our approach of trying multiple heuristics in parallel and ex-
ploring nearby solutions does result in much faster solutions

7For instance, sorting the rectangles in decreasing width order may yield
the heuristic ordering �A, B, C, D, E�. If placing rectangles in this order
does not yield a satisfactory solution, we might next try the ordering �B,
A, C, D, E�.

sched = blank schedule
for i = 1 to number of distinct types of workloads do
remaining[i] = number of workloads of type i

call place next workload(sched, remaining)
exit with “No schedule found”

place next workload(sched, remaining)
if remaining[i] = 0 for all i then

exit with “Schedule found”, sched
for i = 1 to number of distinct types of workloads do /* L */

if remaining[i]� 0 then
/* Build a sched. by placing a workload of type i next */
for s = 1 to number of servers do

for t = beginning of round to end of round do
if (s, t) is an active corner in sched
and a workload of type i fits at loc. (s, t) in sched then

sched2 = sched
remain2 = remaining
Place a wl. of type i at loc. (s, t) in sched2
decrement remain2[i]
call place next workload(sched2, remain2)
/* Only consider the first placement that fits */
skip to next iteration of loop L

Figure 4. Search ordering. If the heuristic placement methods do not
immediately find a solution, nearby solutions are searched as specified by
this algorithm. The particular heuristic being used affects the ordering of
the types of workloads in the above code. For instance, if Decreasing Width
is used, “workloads of type 1” refers to those with the greatest width.

in the mean. Furthermore, for problems too large to solve
even with this approach, relaxing the value of ���	�
�����

can create an easier-to-solve version of the problem.
1) Experimental setup:

Problem instances: To create a large number of work-
load sets, we generate lists of storage workloads randomly.
A range of list sizes is generated to evaluate the growth of
computation time as the number of workloads grows. For
each workload, we choose the number of servers on which
to store the workload uniformly at random from among the
numbers 1, 3, 5, 7, and 9.8 For each workload, we also
choose uniformly at random the proportion of the servers’
time it needs from among the fractions 1/2, 1/3, 2/3, 1/4,
1/5, and 1/6.

An appropriate cluster size is calculated by summing the
areas of the workloads’ rectangles and choosing a number of
servers so that the cluster’s rectangle has that area, rounded
up (before adjusting for ���	�
�����). This corresponds to
the cluster size that would have the least wasted resources
for that set of workloads. If one or more of the workloads
needs more than the computed number of servers, the cluster
size is increased to match.

We used this procedure to generate 1000 random problem
instances of each size depicted in the figures, with the
exception of some of the ���	�
����� � ��� cases to keep

8These values are typical of threshold quorum schemes used for erasure
coding, where an odd number ensures a majority exists for a bipartition of
servers.

experiment time manageable; for 14, 20, and 30 workloads,
we used 500 random problem instances and for 40 workloads
we generated 200 problem instances.

Hardware: All experiments were performed on ma-
chines with Pentium 4 Xeon 3.0 GHz processors running
Linux 2.6.24. The memory footprint of strip packing is
small, so memory and storage were not bottlenecks.

2) Results:
Exhaustive method: We use the exhaustive method to

solve these problem instances. Search times grew exponen-
tially with the number of workloads. For ten workloads, they
averaged around two seconds; for eleven workloads, around
18 seconds; for twelve, around 140 seconds; and for thirteen
workloads, around 1250 seconds (about 20 minutes). Beyond
thirteen workloads, exhaustive search was impractical. For
instance, one fourteen-workload instance took about 6 hours.

Individual heuristics: We also tried applying the de-
creasing width, decreasing height, decreasing area, and de-
creasing perimeter heuristics to the problem. If a solution
was not found by one of the heuristic orderings, we contin-
ued to explore the solution space, starting near the heuristic
orderings, until a solution was found or the entire solution
space had been exhausted, as described in Section III-E.
No single heuristic improved the mean time to solution;
search time averages over the sets of workloads of each size
for each heuristic were indistinguishable from the unsorted
exhaustive search.

Our approaches: Figure 5 shows solution speed with
our approach — parallel execution of the four heuristics,
continuing to search the solution space if a solution is not
found. A timeout value, described in the next section, is used
to terminate the search and return “no solution found” after a
period of time. The plotted times correspond to running the
four threads on a single CPU, each at quarter-speed. This
represents a pessimistic run time; one might use CPUs in
the storage cluster itself to perform this search in parallel,
or a multi-core machine.

Figure 6 shows, for the ���	�
����� � ��� case, the
proportion of problems solved for each of the four heuristics
(and continued search of nearby orderings for a limited
period of time) normalized against the number of problems
solved using our approach. No one heuristic is sufficient to
solve all of the problems in a reasonably short period of time.
Our approach improves solvability by allowing whichever of
the four is best for a particular problem to be used without
knowing which it will be.

Figure 7 shows the tradeoff between ���	�
����� and
runtime for problems of size 13. Relaxing ���	�
����� not
only reduces run time, but also makes more of the randomly-
generated problem instances solvable. To maintain the de-
sired overall R-value, however, this approach would then
incur the cost of increasing ������� to compensate.

Solvability and timeouts: We observed that our ap-
proach either finds a solution relatively quickly, or not at

 0

 200

 400

 600

 800

 1000

 10 15 20 25 30 35 40

S
ec

on
ds

 to
 s

ol
ve

Number of workloads

�������	
�� � ���

�������	
�� � ���

Figure 5. Parallel heuristic search. Running searches initialized with
different heuristics in parallel allows the best-performing heuristic for a
particular problem to find a solution faster. For the ����������	 � ��
case, however, an adequate sample size could not be achieved for problems
of size 14 and greater due to growing run time. Relaxing ����������	

further accelerates the search and makes larger problems tractable. The
error bars show one standard deviation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40

P
ro

po
rt

io
n

so
lv

ed

Number of workloads

Unsorted
DW
DH
DA
DP

Figure 6. Proportion of problems solved per heuristic. In a limited
amount of time (one minute for 14 and 20 workloads, two minutes for
30 workloads, and nine minutes for 40 workloads), initializing a search
with one heuristic is not able to solve all of the problems that trying the
combination of heuristics in parallel is able to solve. The proportion of
problems solved is normalized against the number of instances solved using
the parallel approach. While the performance of DW and DP is similar and
both do well, the two alone are not sufficient.

all, suggesting that we should halt the search after a period
of time. To determine appropriate timeout values for each
problem size, we ran all of the randomly-generated problem
instances of that size without a timeout. Initially, many runs
find a solution and terminate. Over time, we observed a
decline in “completions” until a negligible or zero number of
completions occurred per minute, at which point we halted
the experiment. We then used the 90th percentile of these

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.85 0.9 0.95 1
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

F
ra

ct
io

n
so

lv
ab

le

S
ec

on
ds

 to
 s

ol
ve

Time
Solvable

����	
����

Figure 7. R-value tradeoffs for 13 workloads. Relaxing ����������	 can
accelerate solution speed and increase the number of solvable instances.

completion times (rounded up to the nearest second) for the
timeout value for that size problem instance. This has the
effect of sacrificing the ability to find a small number of
solutions with outlying run times. For ���	�
����� � ���,
timeouts were one second for problem sizes under twelve
workloads; for twelve workloads the timeout was 2 seconds;
for thirteen workloads, 5 seconds; for fourteen, 6 seconds;
for twenty workloads, 30 seconds; for thirty, 114 seconds;
and for forty workloads, 524 seconds.

Since many of these problem instances are too large to
exhaustively solve, we cannot determine for certain that
solutions do not exist beyond those we found. However, our
experience with smaller instances, where we can compare
the number of solutions found by our technique to exhaustive
search, suggests that this strategy results in finding the
vast majority. For instance, no further solutions were found
by running to exhaustion the thirteen-workload problem
instances that did not find a solution before we halted the
original experiment; the percentile used to set the timeout
directly determines what percent of problems will be solved
in this case.

Parallelization in the cluster: Our experiments show
that the single-CPU parallel heuristic search achieves our
“few minutes or less” target. But, searching for a solution
to the scheduling problem is an “embarrassingly parallel”
problem which can be split up across a virtually unlimited
number of CPUs. Thus, any CPUs available in the storage
cluster for which the schedule is being computed can be
exploited. For ���	�
����� � ���, if one CPU per server in
the cluster is used to parallelize the search, then on average
problems with twenty workloads take less than half a second,
problems with thirty workloads take about a second, and
problems with forty workloads take under four seconds.9

9Recall that the number of servers varies across problem instances.

IV. COORDINATION AMONG SERVERS

Once an appropriate schedule has been determined, the
servers must follow it in a synchronized fashion. This section
describes the requirements associated with such coordination
and the solution we adopted.

A. Requirements

The servers must begin following the schedule of time-
slices at approximately the same moment of wall-clock
time.10 Once begun, the servers must start each subsequent
timeslice in the schedule at the same approximate time. If
a timeslice begins late at one server for some reason, the
next timeslice must either begin on time, or the servers must
all retard the beginning of the next timeslice by the same
amount.

In addition to coordinating the timeslices across the
servers, there are other decisions made by the servers that
impact a workload’s performance if not also coordinated.
For example, if a workload has more requests queued than
can be handled in a single timeslice, the servers must choose
which subset of requests to send to disk. Only those requests
chosen by all the servers will complete at the client that
round. But, notice that the issue here is the set of requests
completed rather than the order in which they are completed
— request scheduling within each timeslice does not need
to be synchronized and can be local to each server, allowing
each server’s low-level disk scheduling to remain unchanged.

The number of requests per timeslice: Requests arrive
at our storage server via a custom protocol before being
turned into I/O system calls. We perform timeslicing be-
tween workloads by queueing requests in the user-level stor-
age server, then issuing the corresponding system calls once
a workload’s timeslice begins. However, we are not able to
cancel a request that has been sent to the kernel or disk; this
complicates the implementation of our scheduler. Timeslices
establish a period of time during which a workload’s requests
can execute, but the number of requests that can be executed
during that period is not known with certainty in advance.
If we send more requests than would fill the timeslice, we
would delay the beginning of the next timeslice. If we send
fewer requests than could fit, we would waste time.11 Thus,
we estimate how many requests would fill the timeslice
based on historical observations of a given workload. We
then send exactly that many to the disk, provided enough
requests have been queued by the client.

Variations in disk service times may make the historical
observations different across the servers. If one server issues
more requests in a timeslice than the others, the client will
still have to wait for the other servers to complete the extras.

10Because timeslices are long, e.g. 140 ms, small offsets among the
servers — say, 0.5 ms — will not be significant.

11We could “trickle” additional requests to the disk until the timeslice
ends, but this conservative strategy can hurt workloads that benefit from
disk scheduling optimizations for concurrent requests.

If one server issues fewer requests than the others, on the
other hand, it impedes client performance. Thus, care must
be taken so that the servers issue approximately the same
number in a given timeslice.

B. Symmetric operation

We prefer not to need a central coordinator. Our method
for achieving this is to make decisions independently at each
of the servers in such a way that they usually will agree
across the servers without explicit coordination. We call
this approach symmetric operation. We designed our servers
to avoid central coordination of the beginning and end of
timeslices, the number of requests to issue in a timeslice,
and which specific requests to issue in a timeslice if there
are more queued than can be issued.

Timeslices are co-scheduled by using ntp [17] to keep
wall-clock time synchronized across the cluster. The man-
agement tool that determines the overall schedule of time-
slices in a cluster also assigns a fixed wall-clock time for
when the schedule should begin. Using this “time zero” and
the schedule, the start and end times for each timeslice
can be calculated. Once a server receives a schedule, it
waits until the zero time and then uses its own clock to
follow the schedule. If a server receives a schedule after the
indicated time has passed, it joins the schedule in progress.
If a workload overruns its timeslice, the server abbreviates
the following timeslice to fall back in sync by the end of
that second timeslice.

When more requests are queued than can be issued in a
timeslice, the servers independently choose the same set to
issue. In our procotol each request is labeled with a unique
ID by the client. Relative to a specific client, newer requests
have a numerically greater ID. Thus, even if requests are
received in different orders at different servers, the request
IDs can be used to establish a consistent temporal ordering.
When choosing which subset of requests to issue in a given
timeslice, then, each server can choose the oldest requests in
the queue and be in agreement without explicit coordination.
This approach also has the desirable effect of avoiding
starvation.

Each server independently determines how many requests
to issue in a given timeslice based on an exponentially-
weighted moving average (EWMA) of the service times
in previous timeslices for the associated workload at that
server. This approach is not overly sensitive to occasional
discrepancies, resulting in closely matching values across
the cluster. Should a particular workload not be achieving
its expected performance, there are two possible remedies.
First, the � parameter for the EWMA, which represents the
desired amount of smoothing, could be adjusted for that
workload to promote more stable behavior. Alternatively,
central coordination could selectively be provided for that
workload.

C. Evaluation

We ran experiments to confirm that (1) timeslicing without
synchronization results in poor performance and (2) that
symmetric operation results in coordination between the
servers and the desired performance insulation.

Experiments were run on a cluster of Pentium 4 Xeon
3.0 GHz machines running Linux 2.6.16.11. The machines
had 2 GB of RAM, but the storage servers were directed to
use only 1 MB of RAM for caching to avoid confounding
cache effects with disk performance. Each server used two
Seagate Barracuda ST3250824AS 250 GB 7200 RPM SATA
drives, one as a boot drive and one as the volume exported
by our storage server. The drives were connected through
a 3ware 9550SX controller. Both the disks and controller
support command queueing. The machines were connected
over Gigabit Ethernet using Intel 82546 NICs. Clients use
the same hardware and do not perform local caching. The
software used was Ursa Minor [1], with the Argon storage
server [22].

1) Varying the number of servers: The first experiment
shows that, while simple timeslicing provides performance
insulation on a single server, striping data across two or
more servers requires coordination between the servers to
provide acceptable performance. We store two files, each
of size 100 GB, contiguously starting at the beginning of
the disks. Three closed, read-only, random workloads with
no think time are run on three separate client machines.
The first and third workloads use the first file and have one
outstanding request at a time. The second workload uses the
second file and has four outstanding requests at a time. We
assign each workload one-third shares of each of the servers
and request an R-value of 0.9. We run the workloads for a
period of eight minutes and monitor the throughput over the
last five minutes. The block size is chosen so that each server
must supply 4 KB. This holds the disk activity constant as
we increase the number of servers, to emphasize clustering
effects.

Figure 1 on page 1 shows the throughput of the first
workload as we vary the number of servers under three
scenarios.12 The performance insulation goal is that the
workload will receive a normalized throughput of ��� � �

�
.

Without timeslicing, the workload receives significantly less,
regardless of the number of servers (in this case because
Workload 2 — not shown — crowds it out with its higher
degree of concurrency). Timeslicing solves the interference
problem for the single-server case. But, with data striped
over � � servers, timeslicing results in worse perfor-
mance due to lack of coordination. Synchronizing timeslices
achieves the goal for each cluster size tested.

The other workloads are not shown in the figure for

12Standalone performance ranged from 305 KB/s for one server — within
7% of the datasheet performance for 4 KB random reads on this drive —
to 2.2 MB/s for nine servers.

readability, but they behave similarly. In the Timeslicing
case, they also miss their goal performance by a wide
margin. In the Synchronized case, each achieves its goal.

2) Macrobenchmarks: The next experiment confirms that
our approach works for more realistic workloads. We run
Postmark, TPC-C, and a specific query from TPC-H. We
ask the cluster to maintain an R-value of 0.85.

Postmark [11] is a benchmark designed to measure per-
formance for small file workloads, such as on an email or
newsgroup server. It measures the number of transactions
per second that the system is capable of supporting. A
transaction is either a file create or file delete, paired with
either a read or an append.

The TPC-C workload mimics an on-line database per-
forming transaction processing [20]. Transactions invoke
8 KB read-modify-write operations to a small number of
records in a 5 GB database. The performance of this
workload is reported in transactions per minute (tpm).

TPC-H is a decision-support benchmark [21]. It consists
of 22 different queries and two batch update statements.
Each query processes a large portion of the data in streaming
fashion in a 1 GB database. Performance is measured by the
elapsed time a query takes to complete. We run query 3 in
this experiment (its runtime was closest to the other two
benchmarks’).

The workloads run on a cluster of six servers. Postmark
is striped across five servers and is allocated �

�
of time

on each. TPC-C and TPC-H are each striped across three
servers, and each is allocated �

�
of time on its respective

set of servers. Table I shows the performance each receives,
normalized to its standalone performance. Again, uncoordi-
nated timeslicing is inadequate because workloads must wait
for the slowest server to respond. Creating a schedule for
the cluster and coordinating the servers provides the desired
performance for each workload.

V. RELATED WORK

This section discusses related work in three areas: quality
of service for storage systems, gang- and co-scheduling for
high-performance computing, and spindle synchronization in
disk arrays. Discussed earlier were the Argon paper [22] that

Table I
MACROBENCHMARKS

Benchmark Shared goal Timeslicing Synchronized
Postmark ���� ��� � ��� � ��� 0.29
TPC-C ���� ��� � ��� 0.21 0.58
TPC-H ���� ��� � ��� 0.50 0.62

Timeslicing is unable to achieve the desired efficiency for three mac-
robenchmarks sharing a cluster. Only with a synchronized timeslice sched-
ule do the workloads perform as expected. Performance is normalized
against what each workload receives when it has exclusive use of its
machines; bigger is better. For TPC-H, the metric is inverse runtime; for
the others, transactions per second.

led to this work and the theoretical results on strip packing
described in Section III-C.

Most storage quality-of-service (QoS) research [3], [9],
[10], [16], [24] has focused on using control theory to pro-
vide performance guarantees to workloads without concern
for efficiency. By avoiding the timeslicing performed by
Argon, they may cluster more easily. (If control systems
exist on individual servers, it would remain important that
their decisions agree.) Workloads that benefit from locality
or streaming disk bandwidth, however, can experience inter-
ference that causes an order of magnitude lower efficiency
in these systems, making the ability to compose Argon-style
guarantees desirable.

Timeslicing is employed to share CPUs among workloads
in most common operating systems. Co-scheduling [19] and
gang scheduling [6] enforce synchronized CPU timeslices
in HPC clusters in the same spirit as our synchronization
of disk timeslices. Despite the similarities, the approaches
used to create process schedules for an HPC cluster are not
directly applicable to storage systems. First, the strategies
employed in the HPC setting may be constrained by com-
munication topologies that do not apply to storage systems.
Second, the cost of “context switches” can be significantly
greater in storage systems than for CPUs; processor shar-
ing techniques need not take as much care to minimize
the occurrence of context switches. Thus, polynomial-time
algorithms can be used for gang scheduling [5].

A similar coordination problem to ours is that of spindle
synchronization in disk arrays [13], [18]. Without explicit
synchronization among disks that store units of the same
striped block, the rotational speeds and phases of the disks
may differ. This can result in rotational latencies approach-
ing the worst case (one whole rotation) instead of the average
case as the number of disks increases.

VI. CONCLUSION

Performance insulation can be realized in cluster-based
storage by co-scheduling timeslices for each striped work-
load. Parallel execution of several heuristics enables quick
discovery of global schedules in most cases. Explicit time
synchronization and implicit work coordination enable the
system to provide 2–3X higher throughput than without
performance insulation.

ACKNOWLEDGMENT

We thank our colleagues Christos Faloutsos, Raja Sam-
basivan, Spencer Whitman, and Elie Krevat for discussions
and input. We thank the members and companies of the PDL
Consortium (including APC, Cisco, DataDomain, Facebook,
EMC, Google, HP, Hitachi, Intel, LSI, Microsoft, NetApp,
Oracle, Symantec, VMware) for their interest, insights,
feedback, and support. We also thank Intel, IBM, Network
Appliances, Seagate, and Sun for hardware donations that

enabled this work. This material is based on research spon-
sored in part by the National Science Foundation, via grants
#CNS-0326453 and #CCF-0621499, by the Department of
Energy, under award number DE-FC02-06ER25767, by the
Army Research Office, under agreement number DAAD19–
02–1–0389, and by an NDSEG Fellowship sponsored by the
Department of Defense.

REFERENCES

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamohideen,
J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie. Ursa
Minor: versatile cluster-based storage. Conference on File and
Storage Technologies (San Francisco, CA, 13–16 December
2005), pages 59–72. USENIX Association, 2005.

[2] B. S. Baker, J. E. G. Coffman, and R. L. Rivest. Orthogonal
packings in two dimensions. SIAM J. Comput., 9(4):846–55,
November 1980.

[3] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. P. Lee. Performance virtualization for large-
scale storage systems. Symposium on Reliable Distributed
Systems (Florence, Italy, 06–08 October 2003), pages 109–
118. IEEE, 2003.

[4] W. F. de la Vega and V. Zissimopoulos. An approximation
scheme for strip packing of rectangles with bounded dimen-
sions. Discrete Applied Mathematics, 82:93–101, 1998.

[5] D. Feitelson. Job scheduling in multiprogrammed parallel
systems. IBM Research Report RC 19790 (87657), October
1994, Second Revision, August 1997.

[6] D. Feitelson and L. Rudolph. Gang scheduling performance
benefits for fine-grain synchronization. Journal of Parallel
and Distributed Computing, 16:306–18, 1992.

[7] P. C. Gilmore and R. E. Gomory. A linear programming
approach to the cutting-stock problem. Operations Research,
9:849–59, 1961.

[8] E. Hopper and B. C. H. Turton. An empirical investigation
of meta-heuristic and heuristic algorithms for a 2D packing
problem. European Journal of Operational Research, 128:34–
57, 2001.

[9] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (New York, NY, 12–16 June 2004), pages 37–48.
ACM Press, 2004.

[10] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Per-
formance Isolation and Differentiation for Storage Systems.
International Workshop on Quality of Service (Montreal,
Canada, 07–09 June 2004), pages 67–74. IEEE, 2004.

[11] J. Katcher. PostMark: a new file system benchmark. Technical
report TR3022. Network Appliance, October 1997.

[12] C. Kenyon and E. Remila. Approximate strip packing.
Proceedings of the 37th Annual Symposium on Foundations
of Computer Science (FOCS), pages 31–6, October 1996.

[13] M. Y. Kim. Synchronized disk interleaving. IEEE Transac-
tions on Computers, C–35(11):978–988, November 1986.

[14] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher.
New exhaustive, heuristic, and interactive approaches to 2D
rectangular strip packing. Technical report TR2003-05.
Mitsubishi Electric Research Laboratories.

[15] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. New
heuristic and interactive approaches to 2D rectangular strip
packing. Technical report TR2005-113. Mitsubishi Electric
Research Laboratories.

[16] C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade: virtual
storage devices with performance guarantees. Conference
on File and Storage Technologies (San Francisco, CA, 31
March–02 April 2003), pages 131–144. USENIX Associa-
tion, 2003.

[17] D. L. Mills. Network time protocol (version 3), RFC–1305.
IETF, March 1992.

[18] S. Ng. Some design issues of disk arrays. IEEE Spring
COMPCON, pages 137–142. IEEE, 1989.

[19] J. K. Ousterhout. Scheduling techniques for concurrent
systems. Proceedings of the 3rd International Conference
on Distributed Computing Systems (ICDCS), pages 22–30,
October 1982.

[20] Transaction Processing Performance Council. TPC Bench-
mark C, December 2002. http://www.tpc.org/tpcc/.

[21] Transaction Processing Performance Council. TPC Bench-
mark H, December 2002. http://www.tpc.org/tpch/.

[22] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger.
Argon: performance insulation for shared storage servers.
Conference on File and Storage Technologies (San Jose, CA,
13–16 February 2007), 2007.

[23] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou. Scalable performance
of the Panasas parallel file system. Conference on File and
Storage Technologies (San Jose, CA, 26–29 February 2008),
2008.

[24] T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-Szendy.
Zygaria: Storage Performance as a Managed Resource. RTAS
– IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (San Jose, CA, 04–07 April 2006), pages
125–134, 2006.

